Deformations of Calibrated Submanifolds

نویسندگان

  • Robert C. McLean
  • ROBERT C. MCLEAN
چکیده

Assuming the ambient manifold is KK ahler, the theory of complex sub-manifolds can be placed in the more general context of calibrated submanifolds, see HL]. It is therefore natural to try to extend some of the many results in complex geometry to the other calibrated geometries of HL]. In particular, the question of deformability of calibrated submanifolds is addressed here (analogous to Kodaira's work on deformations of complex submanifolds K]). Also, a formula for the second variation of volume of an arbitrary calibrated submanifolds which generalizes a result of Simons' in the complex category S] is given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 M ay 2 00 5 CALIBRATED MANIFOLDS AND GAUGE THEORY

We show that the moduli spaces of associative submanifolds of a G 2 manifold (and Cayley submanifolds of a Spin(7) manifold) can be perturbed to smooth manifolds. By using connections as natural parameters and by constraining them with an additional equation and using Seiberg-Witten theory we can make them compact, and hence assign local invariants to these submanifolds. The local equations of ...

متن کامل

Calibrated Manifolds and Gauge Theory

By a theorem of Mclean, the deformation space of an associative submanifold Y of an integrable G2-manifold (M,φ) can be identified with the kernel of a Dirac operator D/ : Ω(ν) → Ω(ν) on the normal bundle ν of Y . Here, we generalize this to the non-integrable case, and also show that the deformation space becomes smooth after perturbing it by natural parameters, which corresponds to moving Y t...

متن کامل

A ug 2 00 7 CALIBRATED MANIFOLDS AND GAUGE THEORY

By a theorem of Mclean, the deformation space of an associative submanifold Y of an integrable G2-manifold (M, ϕ) can be identified with the kernel of a Dirac operator D / : Ω 0 (ν) → Ω 0 (ν) on the normal bundle ν of Y. Here, we generalize this to the non-integrable case, and also show that the deformation space becomes smooth after perturbing it by natural parameters, which corresponds to mov...

متن کامل

Infinitesimal deformations and stabilities of singular Legendre submanifolds.

Infinitesimal deformations and stabilities of singular Legendre submanifolds.

متن کامل

M ay 2 00 6 CALIBRATED MANIFOLDS AND GAUGE THEORY

By a theorem of Mclean, the deformation space of an associative sub-manifolds of an integrable G2 manifold (M, ϕ) at Y ⊂ M can be identified with the kernel of the Dirac operator D / : Ω 0 (ν) → Ω 0 (ν) on the normal bundle ν of Y. We generalize this to non-integrable case, and also show that the deformation space becomes smooth after perturbing it by natural parameters, which corresponds to mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996